It Show that the uniform limit of
a sequence of contain on functions
is containous, and hence that if
$$m(E) < +\infty$$

and $f: E \to |R|$ to measurable then, $\forall \eta > 0$,
 $\exists closed set F \subseteq E with $m(E \setminus F) < \eta$
mit that $f|_F : F \to |R|$ to continuous.$

2. Let
$$F = \bigcup_{n=1}^{n} F_n$$
, dijont closed sets $F_{i}, ..., F_n$.
Let $f: F \rightarrow IR$ he such that $f|_{F_n}$ is $ct_{5}, \forall n$.
Show that f is ct_{5} .
3.* Let $F_n \subseteq (n, n+1]$ be closed ($IR : F_n$
of m) $\forall n \in N$, and let $F = \bigcup_{n \in N} F_n$.
Show that $f: F \rightarrow IR$ is continuous if
each $f|_{F_n}$ is ct_{5} . (Can the condition
 $F_n \subseteq (n, n+1]$ be weakened to $F_n \subseteq IR$?)

4. Let $G = \bigcup_{n \ge 1} I_n$, comtable disjoint open interrets In, and let F: IRIG. Let X<Y<Z with X,ZEF and YEIn=(an,bn). Show hart an EF, bn EF, XSan, and bn SJ 5. Let G, In, F he as in Q4, and let f: IR->IR be such that $J|_F$ and $f|_{\overline{In}}$ be contrinuous, YnEN (In denotes the closure of In). Suppose further Xhat the graph of $f|_{\overline{T}}$ is a line-segment. Show that f is contininous (by symmetry, need my show that f is right-containing at $each x_{0} \in |\mathbb{R} := \lim_{x \to x_{0} \neq x_{0}} f(x) = f(x_{0}), i.e. \forall \xi = 70 \exists$ $\chi \to \chi_{0} \neq x_{0} \neq x$ This is evident if 26EG (So InENSIF Xo (-In). We may hence assume that xo EF, and true are three cases to consider